Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications
Reference29 articles.
1. Budennyy, S., Pachezhertsev, A., Bukharev, A., Erofeev, A., Mitrushkin, D., Belozerov, B., 2017. Image Processing and Machine Learning Approaches for Petrographic Thin Section Analysis. OnePetro. https://doi.org/10.2118/187885-MS
2. Caja, M.Á., Peña, A.C., Campos, J.R., García Diego, L., Tritlla, J., Bover-Arnal, T., Martín-Martín, J.D., 2019. Image Processing and Machine Learning Applied to Lithology Identification, Classification and Quantification of Thin Section Cutting Samples. OnePetro. https://doi.org/10.2118/196117-MS
3. Chai, H., 2020: A carbonate micrograph dataset of Feixianguan formation in northwestern margin of upper Y angtze. Science data Bank. https://doi.org/10.11922/sciencedb.j00001.00021
4. Chai, H., Xing, F., Gu, Q., Chen, X., Zhou, S.: A carbonate micrograph dataset of Feixianguan formation in northwestern margin of upper Y angtze. China Sci. Data. 5, 131–140 (2020)
5. He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778.