Image Processing and Machine Learning Approaches for Petrographic Thin Section Analysis

Author:

Budennyy Semen1,Pachezhertsev Alexey1,Bukharev Alexander1,Erofeev Artem1,Mitrushkin Dmitry1,Belozerov Boris2

Affiliation:

1. Center for Engineering and Technology of Moscow Institute of Physics and Technology

2. NTC Gazpromneft

Abstract

Abstract The article presents the methodology of petrographic thin section analysis, combining the algorithms of image processing and statistical learning. The methodology includes the structural description of thin sections and rock classification based on images obtained from polarized optical microscope. To evaluate the properties of structural objects in thin section (grain, cement, voids, cleavage), first they are segmented by watershed method with advanced noise reduction, preserving the boundaries of grains. Analysis of segmentation for test thin sections showed a fairly accurate contouring of mineral grains which makes possible automatically carry out the calculation of their key features (size, perimeter, contour features, elongation, orientation, etc.). The paper presents an example of particle size analysis – definition of grains size class. The roundness and rugosity coefficients of grains are estimated also. Statistical analysis of templates for manual determination of roundness and rugosity coefficients revealed drawback of examined templates in terms statistical accuracy (high dispersion of coefficient for all grain within one template, outliers presence). In the frame of classification problem the feature importance analysis and clustering of non-correctly segmented grains are handled. The classifier for rock type definition (sandstone, limestone, dolomite) is trained with decision tree method, while the classifier of mineral composition of sandstones (greywackes, arkose) is learnt with "random forest" method. Both classifiers are learnt in the feature space generated from segmented grains and their evaluated properties. As a result, we proved the possibility to conduct automatic quantitative and qualitative analysis of thin sections applying image processing and statistical learning methods.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3