Klinkenerg-Corrected Permeability Measurements in Tight Gas Sands: Steady-State Versus Unsteady-State Techniques

Author:

Rushing J.A.1,Newsham K.E.2,Lasswell P.M.3,Cox J.C.4,Blasingame T.A.5

Affiliation:

1. Anadarko Petroleum Corp.

2. Apache Corp.

3. OMNI Laboratories Inc.

4. Texas Tech University

5. Texas A&M University

Abstract

Abstract This paper presents results from a laboratory study comparing Klinkenberg-corrected permeability measurements in tight gas sands using both a conventional steady-state technique and two commercially-available unsteady-state permeameters. We also investigated the effects of various rate and pressure testing conditions on steady-state flow measurements. Our study shows the unsteady-state technique consistently overestimates the steady-state permeabilities, even when the steady-state measurements are corrected for gas slippage and inertial effects. The differences are most significant for permeabilities less than about 0.01 md. We validated the steady-state Klinkenberg-corrected permeabilities with liquid permeabilities measured using both brine and kerosene. Although gas slippage effects are more pronounced with helium than with nitrogen, we also confirmed the steady-state results using two different gases. Moreover, we show results are similar for both constant backpressure and constant mass flow rate test conditions. Finally, our study illustrates the importance of using a finite backpressure to reduce non-Darcy flow effects, particularly for ultra low-permeability samples. Introduction Permeability measurements in core samples are based on the observation that, under steady-state flowing conditions, the pressure gradient is constant and is directly proportional to the fluid velocity. This constant of proportionality, as defined by Darcy's law, Equation 1 is the absolute core permeability, k8. This relationship has been validated for a wide range of flow velocities. For cores with permeabilities less than about 0.1 md, steady-state flow is difficult to achieve in a reasonable test time, especially when liquid is the flowing fluid. Consequently, gas is routinely used in low-permeability core samples. However, gas flow in tight gas sands is often affected by several phenomena that may cause deviations from Darcy's law. Failure to account for these non-Darcy effects, principally gas slippage and inertial flow, may cause significant measurement errors. Gas slippage is a non-Darcy effect associated with non-laminar gas flow in porous media. These effects occur when the size of the average rock pore throat radius approaches the size of the mean free path of the gas molecules, thus causing the velocity of individual gas molecules to accelerate or "slip" when contacting rock surfaces.1 This phenomenon is especially significant in tight gas sands that are typically characterized by very small pore throats. Klinkenberg,2 who was one of the first to study and document gas slippage effects in porous media, showed the observed permeability to gas is a function of the mean core pressure. Furthermore, he observed that the gas permeability approaches a limiting value at an infinite mean pressure. This limiting permeability value, which is sometimes referred to as the equivalent liquid permeability1 or the Klinkenberg-corrected permeability, is computed from the straight-line intercept on a plot of measured permeability against reciprocal mean pressure. In equation form, the line is defined by Equation 2 where k is the Klinkenberg-corrected permeability and b is the gas slippage factor. Experimental studies by Krutter and Day,3 Calhoun and Yuster4 and Heid, et al.,5 extended and validated the work of Klinkenberg.2

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3