Assessment of True Formation Resistivity and Water Saturation in Deeply Invaded Tight-Gas Sandstones Based on the Combined Numerical Simulation of Mud-Filtrate Invasion and Resistivity Logs

Author:

Merletti German, ,Al Hajri Salim,Rabinovich Michael,Farmer Russell,Bennis Mohamed,Torres-Verdin Carlos, , , , ,

Abstract

The process of mud-filtrate invasion involves immiscible fluid displacement and salt mixing between mud filtrate and formation fluids in porous and permeable rocks. Consequently, the post-invasion spatial distribution of fluids and electrolyte concentration around the borehole affects resistivity measurements with different depths of investigation (DOI). In the presence of deep mud-filtrate invasion, the assessment of water saturation in the uninvaded zone based on the deep resistivity log can be inaccurate. Deep and electrically conductive filtrate invasion coupled with shoulder-bed effects can artificially increase water saturation (Sw) estimations by 20 saturation units (s.u.) in the Barik reservoir, resulting in pessimistic estimates of hydrocarbon pore volume if no corrections are applied. The Barik sandstone reservoir, which is characterized by low porosity ( up to 14%), low-to-medium permeability (up to 40 md), and high residual gas saturation (40 to 50%), exhibits low storage capacity to admit the critical filtrate volume necessary for building an impermeable mudcake. Combined with multiple days of overbalanced exposure to saline water-based mud (WBM), mud-filtrate invasion results in deep and smooth radial transition zones where the uninvaded formation is far beyond the depth of investigation of laterolog tools. Deep resistivity values are, therefore, lower than the true formation resistivity. Additionally, numerical simulations of resistivity logs show that the resistivity reduction by conductive invasion is further aggravated by shoulder-bed effects when individual reservoir thickness falls below 2.5 m. This paper describes the implementation of a compositional fluid-flow simulator to numerically model WBM-filtrate invasion and mudcake buildup in vertical boreholes. The algorithm allows the simulation of physical dispersion and fluid displacement around the borehole in a multilayer model. Time-dependent radial profiles of Sw and salinity are combined with core-calibrated porosity and electrical properties to compute electrical resistivity via Archie’s formulation. Subsequently, numerically simulated logs are generated using vendor-specific forward model processing and compared against field measurements. This workflow was extensively tested in various reservoir intervals with a wide range of petrophysical rock types and drilling conditions. Results show that the deep laterolog exhibits low sensitivity to conductive filtrate invasion when reservoirs’ porosities are lower than 8%. Above that threshold value, invasion length is a nontrivial process involving multiple variables. Even though exposure time to openhole conditions is a key factor leading to deep invasion, certain reservoir characteristics can lead to deeper invasion at short exposure times and significantly increase uncorrected Sw estimates.

Publisher

Society of Petrophysicists and Well Log Analysts (SPWLA)

Subject

Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3