Estimation of Distribution Algorithms Applied to History Matching

Author:

Abdollahzadeh Asaad1,Reynolds Alan1,Christie Mike1,Corne David1,Williams Glyn1,Davies Brian2

Affiliation:

1. Heriot-Watt University

2. BP

Abstract

Summary The topic of automatically history-matched reservoir models has seen much research activity in recent years. History matching is an example of an inverse problem, and there is significant active research on inverse problems in many other scientific and engineering areas. While many techniques from other fields, such as genetic algorithms, evolutionary strategies, differential evolution, particle swarm optimization, and the ensemble Kalman filter have been tried in the oil industry, more recent and effective ideas have yet to be tested. One of these relatively untested ideas is a class of algorithms known as estimation of distribution algorithms (EDAs). EDAs are population-based algorithms that use probability models to estimate the probability distribution of promising solutions, and then to generate new candidate solutions. EDAs have been shown to be very efficient in very complex high-dimensional problems. An example of a state-of-the-art EDA is the Bayesian optimization algorithm (BOA), which is a multivariate EDA employing Bayesian networks for modeling the relationships between good solutions. The use of a Bayesian network leads to relatively fast convergence as well as high diversity in the matched models. Given the relatively limited number of reservoir simulations used in history matching, EDA-BOA offers the promise of high-quality history matches with a fast convergence rate. In this paper, we introduce EDAs and describe BOA in detail. We show results of the EDA-BOA algorithm on two history-matching problems. First, we tune the algorithm, demonstrate convergence speed, and search diversity on the PUNQ-S3 synthetic case. Second, we apply the algorithm to a real North Sea turbidite field with multiple wells. In both examples, we show improvements in performance over traditional population-based algorithms.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3