A learning-from-data approach with soft clustering and path relinking to the history-matching problem

Author:

Cavalcante Cristina C. B.ORCID,de Souza Cid C.,Maschio Célio,Schiozer Denis,Rocha Anderson

Abstract

AbstractHistory matching is an important reservoir engineering process whereby the values of uncertain attributes of a reservoir model are changed to find models that have a better chance of reproducing the performance of an actual reservoir. As a typical inverse and ill-posed problem, different combinations of reservoir uncertain attributes lead to equally well-matched models and the success of a history-matching approach is usually measured in terms of its ability to efficiently find multiple history-matched models inside the search space defined by the parameterization of the problem (multiple-matched models have a higher chance of better representing the reservoir performance forecast). While studies on history-matching approaches have produced remarkable progress over the last two decades, given the uniqueness of each reservoir’s history-matching problem, no strategy is proven effective for all cases, and finding alternative, efficient, and effective history-matching methodologies is still a research challenge. In this work, we introduce a learning-from-data approach with path relinking and soft clustering to the history-matching problem. The proposed algorithm is designed to learn the patterns of input attributes that are associated with good matching quality from the set of available solutions, and has two stages that handle different types of reservoir uncertain attributes. In each stage, the algorithm evaluates the data of all-available solutions continuously and, based on the acquired information, dynamically decides what needs to be changed, where the changes shall take place, and how such changes will occur in order to generate new (and hopefully better) solutions. We validate our approach using the UNISIM-I-H benchmark, a complex synthetic case constructed with real data from the Namorado Field, Campos Basin, Brazil. Experimental results indicate the potential of the proposed approach in finding models with significantly better history-matching quality. Considering a global misfit quality metric, the final best solutions found by our approach are up to 77% better than the corresponding initial best solutions in the datasets used in the experiments. Moreover, compared with previous work for the same benchmark, the proposed learning-from-data approach is competitive regarding the quality of solutions found and, above all, it offers a significant reduction (up to 30 × less) in the number of simulations.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

UNISIM-CEPETRO-UNICAMP

Petrobras

Energi

Agência Nacional do Petróleo, Gás Natural e Biocombustíveis

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3