On Optimal Selection of Objective Grouping for Multiobjective History Matching

Author:

Hutahaean J..1,Demyanov V..1,Christie M. A.1

Affiliation:

1. Heriot-Watt University

Abstract

Summary Multiobjective history matching has gained popularity in the last decade. It provides an ensemble of diverse set and good matched models that should lead to improved forecasting. Moreover, in some cases, multiobjective history matching provides faster and more-robust convergence than the single-objective approach. In multiobjective, objective components (usually groups of them) guide the algorithm to different areas of objective space that lead to a diverse set of optimal solutions. These algorithms are widely established and well-developed for problems with two or three objectives. Under an increasing number of objective components, such as in a reservoir model with multiple wells and production data, multiobjective-history-matching performance (convergence speed and match quality) can deteriorate. One effective approach is grouping objective components to reduce the number of objectives. However, the existing literature does not present sufficient information on appropriate grouping techniques and ways of combining objective components. We present a novel technique to group the objective components depending on analysis of the nonparametric-conflict information obtained from a set with a limited number of initial solutions. By grouping the objectives depending on the conflict between them, we aim to achieve better performance in history matching. We apply this framework to history matching of an industry-standard reservoir model and a real-field case study. We also perform history-matching runs of groupings with different degree of conflict, and then analyze the performance among them with the statistical-significance test. Our extensive simulation results show that the proposed conflict-based strategy can be used as a guideline to help select a grouping of the objective components in multiobjective history matching optimally. By calculating the conflict between objectives a priori, we can identify which grouping scheme will result in a better performance. This technique can significantly improve the fitness quality of the matched model given the same number of flow simulations, and can also obtain a diverse set of models.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3