Adjoint Method for the Optimisation of Conformal Cooling Channels of 3-D Printed High-Pressure Tools for Aluminium Casting

Author:

Zeng Tongyan,Abo-Serie Essam F.,Jewkes James,Dodd Paul,Jones Rhys

Abstract

<div class="section abstract"><div class="htmlview paragraph">The emergence of additive manufacturing (AM) technology has enabled the internal cooling channel layout for high pressure aluminium die casting (HPADC) tools to be designed and modified without topological constraint. Optimisation studies of a full industrial HPADC mould for extending the tool service life has received limited attention due to the high geometrical complexity and the various physics with multi time- and length- scales in addition to the manufacturability limitations. In this work, a new computationally efficient algorithm that employs the adjoint optimisation method has been developed to optimise the coolant channels layout in a complete mould with various 3D printed inserts. The algorithms significantly reduced the computational time and resources by decoupling the fluid flow in the coolant channels from the tool and simulating them separately. The channel’s heat transfer coefficient values are then interpolated and mapped into the thermal model that implements the adjoint optimisation approach to automatically push/pull the pipes toward the cavity based on the gradient of the optimisation function with respect to the pipe surface location. Using the adjoint method, with a customised multi-objective function, an improvement of 15 % for the cooling uniformity between the mould/cast interface was achieved. Because of the simplified mapping approach, a significant reduction in computational cost was achieved by adopting this strategy. The spatial distribution of the tool temperature and cavity are presented for the baseline and optimised channels. The results showed that the optimised channels not only have variations in layout but also in their cross-sectional shape at different locations to satisfy the objective function. The optimised insert designs have been applied in production, yielding a significant increase in tool service lifespan, reaching approximately of 130,000 shots.</div></div>

Publisher

SAE International

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3