Cooling channel free surface optimisation for additively manufactured casting tools

Author:

Zeng Tongyan,Abo-Serie Essam,Henry Manus,Jewkes James

Abstract

AbstractIn the present study, an algorithm has been developed using the adjoint method to optimise the position and cross-section of an internal cooling channel for a 3D printed tool steel insert for use in the aluminium die-casting process. The algorithm enables the development of an optimised complex industrial mould with relatively low computational cost. A transient model is validated against multiple experimental trials, providing an adapted interface heat transfer coefficient. A steady state thermal model, based on the casting cycle and thermal behaviour at the mould surface, is developed to evaluate the spatial distribution of temperature and to serve as the initial solution for the subsequent optimisation stage. The adjoint model is then applied to optimise the cooling channel emphasising the minimisation of the temperature standard deviation for the mould surface. The original transient model is applied to the optimised mould configuration via calibration using experimental data obtained from a dedicated aluminium furnace. The optimised cooling channel geometry, which uses a non-uniform cross-section across the entire pipe surface region, improves the pressure drop and cooling uniformity across the mould/cast interface by 24.2% and 31.6%, respectively. The model has been used to optimise cooling channels for a range of industrial high-pressure aluminium die-casting (HPADC) inserts. This has yielded a significant improvement in the mould operational lifetime, rising to almost 130,000 shots compared to 40,000 shots for prior designs.

Funder

Innovate UK

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3