Affiliation:
1. The Hong Kong Polytechnic University
Abstract
Autostereoscopy technology can provide a rapid and accurate three-dimensional (3D) measurement solution for micro-structured surfaces. Elemental images (EIs) are recorded within one snapshot and the measurement accuracy can be quantified from the disparities existing in the 3D information. However, a trade-off between the spatial and the angular resolution of the EIs is a major obstacle to the improvement on the measurement results. To address this issue, an angular super-resolution algorithm based on deep neural networks is proposed to construct a self super-resolution autostereoscopic (SSA) 3D measuring system. The proposed super-resolution algorithm can generate novel perspectives between the neighboring EIs so that the angular resolution is enhanced. The proposed SSA 3D measuring system can achieve self super-resolution on its measurement data. A comprehensive comparison experiment was conducted to verify the feasibility and technical merit of the proposed measuring system. The results show that the proposed SSA system can significantly improve the resolution of the measuring data by around 4 folds and enhance the measurement accuracy to a sub-micrometer level with lower standard deviations and biases.
Funder
Hong Kong Polytechnic University
Research Grants Council of the Government of the Hong Kong Special Administrative Region, China
Bureau of International Cooperation, Chinese Academy of Sciences
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献