Semi-supervised angular super-resolution method for autostereoscopic 3D surface measurement

Author:

Gao Sanshan1ORCID,Cheung Chi Fai1ORCID,Li Da12ORCID

Affiliation:

1. The Hong Kong Polytechnic University

2. Nankai University

Abstract

Autostereoscopic 3D measuring systems are an accurate, rapid, and portable method for in situ measurements. These systems use a micro-lens array to record 3D information based on the light-field theory. However, the spatial-angular-resolution trade-off curtails their performance. Although learning models were developed for super-resolution, the scarcity of data hinders efficient training. To address this issue, a novel, to the best of our knowledge, semi-supervised learning paradigm for angular super-resolution is proposed for data-efficient training, benefiting both autostereoscopic and light-field devices. A convolutional neural network using motion estimation is developed for a view synthesis. Subsequently, a high-angular-resolution autostereoscopic system is presented for an accurate profile reconstruction. Experiments show that the semi-supervision enhances view reconstruction quality, while the amount of training data required is reduced by over 69%.

Funder

Research Grants Council of Hong Kong

Research and Innovation Office of The Hong Kong Polytechnic University

Hong Kong Polytechnic University

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3