Detections of the position-vectors of the multi targets located in a circular space based on an asymmetric coupling semiconductor lasers network

Author:

Zhong DongzhouORCID,Deng Wanan,Zhao Keke,Hu Yalan,Hou Peng,Zhang Jinbo

Abstract

We present a novel scheme for the detections of the position-vectors of the multi targets distributed in a circular space using multi channels of the probe chaotic waves emitted by the asymmetric coupling semiconductor lasers network (ACSLN), where these probe waves possess the attractive features of the time-space uncorrelation and wide bandwidth. Using these features, the accurate measurement for the position-vectors of the multi targets can be achieved by correlating the multi channels of the probe waves with their corresponding reference waves. The further research results show that the detections for the position-vectors of the multi targets possess very low relative errors that are no more than 0.22%. The ranging-resolutions for the multi targets located in a circular space can be achieved as high as 3 mm by optimizing some key parameters, such as injection current and injection strength. In addition, the ranging-resolutions exhibit excellent strong anti-noise performance even when the signal-to-noise ratio and relative noise intensity appear obvious enhancement. The detections for the position-vectors of the multi targets based on the ACSLN offers interesting perspectives for the potential applications in the driverless cars and the object tracking system with omnidirectional vision.

Funder

National Natural Science Foundation of China

Special project in key fields of Guangdong Universities: the new generation of communication technology

Guangdong Basic and Applied Basic Research Foundation

Innovation team project of colleges and universities in Guangdong Province

Major Projects of Guangdong Education Department for Foundation Research and Applied Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3