Abstract
We propose and numerically demonstrate wideband and high-dimensional chaos signal generation based on optically pumped spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs). Here, we focus on the chaotic characteristics of spin-VCSELs under two scenarios: one is a spin-VCSEL with optical feedback and the other is optical heterodyning the outputs of two free-running spin-VCSELs. Specifically, we systematically investigate the influence of some key parameters on the chaotic properties, i.e., bandwidth, spectral flatness (SF), time delay signature (TDS), correlation dimension (CD), and permutation entropy (PE), and reveal the route to enhance these properties simultaneously. Our simulation results demonstrate for the first time that spin-VCSELs with simple auxiliary configurations allow for chaos generation with desired properties, including effective bandwidth up to 30 GHz and above, no TDS of greater than 0.2, the flatness of 0.75 and above, and the high complexity/dimensionality over a wide range of parameters under both schemes. Therefore, our study may pave the way for potential applications requiring wideband and high-dimensional chaos.
Funder
National Natural Science Foundation of China
Natural Science Research Project of Jiangsu Higher Education Institutions of China
Natural Science Foundation of Jiangsu Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献