Recognition of Noisy Digital Images Using the Asymmetric Coupling Semiconductor Chaotic Lasers Network

Author:

Zhong Dongzhou1,Deng Wanan1,Hou Peng1,Zhang Jinbo1,Chen Yujun1,Wu Qingfan1,Wang Tiankai1

Affiliation:

1. Intelligent Manufacturing Faculty, Wuyi University, Jiangmen 529020, China

Abstract

In this work, we construct a model of an asymmetrically coupled network of semiconductor chaotic lasers in order to recognize noisy digital images of digits 0–9, derived from different samples in the digital image sets 0–9 found within the MNIST dataset. Here, the lasers network consists of eight asymmetrically coupled semiconductor lasers. The chaotic lasers network is driven by the external inputs, which encode one noise digital image to be recognized. The outputs of the chaotic lasers network driven by a total of 40 samples from the digital image sets 0–9 are utilized as ten sets of reference signals. The output of the chaotic lasers network induced by one noisy digital image is used as a test signal. By judging the maximum of the correlations of the test signal with the ten sets of reference signals, all noisy digital images 0–9 can be recognized well under different noises. Moreover, we further explore the recognition rate for each noisy digital image under different noises and a fixed injection strength. It is found that all noisy digital images can be recognized well under a certain low injection strength. The recognition-rates of all noisy digital images can further decrease to a certain extent under higher noise and a fixed the injection strength. The injection strength has little influence on the recognition rate of one noise digital image target with lower noise. The recognition rate under higher noise maintains a higher value (more than 0.9) when the injection strength is smaller than a certain value, but for the larger injection strength, the recognition rate exhibits further decrease. The modeled chaotic lasers network can play the role of photonic accelerators for the recognition of the noisy digital images.

Funder

National Natural Science Foundation of China

Applied Basic Research Foundation of Guangdong Province

Major Projects of Guangdong Education Department for Foundation Research and Applied Research

innovation team project of colleges and universities in Guangdong Province

special project in key fields of Guangdong Universities: the new generation of communication technology

joint research and development fund of Wuyi University, Hong Kong and Macao

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3