High-accuracy calibration method for an underwater one-mirror galvanometric laser scanner

Author:

Li XiaoORCID,Chen Xingpei,Li WeiORCID,Yin Xiaokang,Yuan Xin’an,Chen Huaiyuan,Zhou Jingyu,Ma Xin1

Affiliation:

1. CUHK

Abstract

Three-dimensional (3D) perception of deep-sea targets is the key to autonomous operation of underwater equipment (e.g., underwater robots). Underwater one-mirror galvanometric line-laser scanner has advantages for short-range measurement, but it is difficult to achieve high calibration accuracy due to installation errors and refraction effects. For this reason, in this paper, a high-accuracy refraction-considered and installation-error-independent calibration method is proposed for the vision system. Firstly, to address the difficulty of aligning the incident light plane with the galvanometer shaft, a high-accuracy land-based installation-error-independent model is proposed, which avoids the influence of the installation errors and allows the real shaft axis and the light-plane cluster poses to be calculated using only three light planes. Subsequently, considering the underwater refraction, a 3D model is established for simulating refractive behaviors of the light-plane cluster, and then a partition-based method is proposed for calibrating the underwater light-plane cluster, which further improves the calibration accuracy of the scanner in underwater measurement scenarios. Finally, a one-mirror galvanometric laser scanner is developed in the laboratory to verify the calibration accuracy and to perform the 3D measurement experiments of underwater targets. The results show that the calibration accuracy of the proposed land-based installation-error-independent model is improved 2 times more compared with the traditional installation-error-dependent model. Additionally, the measurement accuracy of the scanner for the standard sphere is 11.98 µm and 12.75 µm in the air and underwater measurement scenarios, and the two measurements are in good agreement. The above results comprehensively verify the high accuracy of the calibration method proposed in this paper.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3