Affiliation:
1. NingboTech University
2. Zhejiang University
3. Zhejiang Engineering Research Center for Intelligent Marine Ranch Equipment
4. Wuhan University of Technology
5. University of Abomey-Calavi
Abstract
High-sensitivity detection of vibrations under high temperatures is a topic of great interest in modern engineering such as thermal engine deep-sea aquaculture factory ship, aerospace, high temperature casting, energy, etc. As traditional accelerometers and some fiber optic F-P accelerometers have shown their sensing limits at about 400 °C and 650 °C, respectively, a high temperature fiber optic F-P accelerometer based on MEMS technology is proposed. To obtain a high-performance chip for the sensor, an examination of the theoretical performance of an L and Г-shaped cantilever beam diaphragm shows a sensitivity of 15.05 nm/g and 53.7 nm/g, respectively, and a wide working frequency range. Thanks to the designed sensor’s various protections, frequency measurements with a high-temperature performance of 850 °C are recorded. The L-shaped cantilever beams diaphragm allows the sensor measurements at 850 °C with a repeatability of 5.46%, a working frequency range of 100-1000 Hz, an experimental sensitivity of 389 mV/g, an overall stability of 8 jumps at its adjacent frequency resolution range over 150 measurements, a linearity of 0.9856 and a maximum relative error maintained below 1.72%. In the field of application, it also exhibits a good relative error of measurement respecting the technical specification of 5 Hz.
Funder
National Natural Science Foundation of China
Ningbo Youth Science and Technology Innovation Leading Talent Project
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献