Diaphragms simulation, fabrication, and testing of a high temperature fiber optic F-P accelerometer based on MEMS

Author:

Mahissi Mariano123,Cai Weiming13ORCID,Zhang Xianmin2,Tong Xinglin4,Zhang Cui4ORCID,Ma Xinli13,Dossou Michel5

Affiliation:

1. NingboTech University

2. Zhejiang University

3. Zhejiang Engineering Research Center for Intelligent Marine Ranch Equipment

4. Wuhan University of Technology

5. University of Abomey-Calavi

Abstract

High-sensitivity detection of vibrations under high temperatures is a topic of great interest in modern engineering such as thermal engine deep-sea aquaculture factory ship, aerospace, high temperature casting, energy, etc. As traditional accelerometers and some fiber optic F-P accelerometers have shown their sensing limits at about 400 °C and 650 °C, respectively, a high temperature fiber optic F-P accelerometer based on MEMS technology is proposed. To obtain a high-performance chip for the sensor, an examination of the theoretical performance of an L and Г-shaped cantilever beam diaphragm shows a sensitivity of 15.05 nm/g and 53.7 nm/g, respectively, and a wide working frequency range. Thanks to the designed sensor’s various protections, frequency measurements with a high-temperature performance of 850 °C are recorded. The L-shaped cantilever beams diaphragm allows the sensor measurements at 850 °C with a repeatability of 5.46%, a working frequency range of 100-1000 Hz, an experimental sensitivity of 389 mV/g, an overall stability of 8 jumps at its adjacent frequency resolution range over 150 measurements, a linearity of 0.9856 and a maximum relative error maintained below 1.72%. In the field of application, it also exhibits a good relative error of measurement respecting the technical specification of 5 Hz.

Funder

National Natural Science Foundation of China

Ningbo Youth Science and Technology Innovation Leading Talent Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3