Point-by-point visual enhancement with spatially and spectrally tunable laser illumination

Author:

Wang Xin,Wang Zewei,Meuret YouriORCID,Smet Kevin A. G.ORCID,Zhang Jingjing12ORCID

Affiliation:

1. Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems

2. Engineering Research Center of Intelligent Technology for Geo-Exploration

Abstract

Vision is responsible for most of the information that humans perceive of the surrounding world. Many studies attempt to enhance the visualization of the entire scene by optimizing and tuning the overall illumination spectrum. However, by using a spatially uniform illumination spectrum for the entire scene, only certain global color shifts with respect to a reference illumination spectrum can be realized, resulting in moderate visual enhancement. In this paper, a new visual enhancement method is presented that relies on a spatially variable illumination spectrum. Such an approach can target much more dedicated visual enhancements by optimizing the incident illumination spectrum to the surface reflectance at each position. First, a geometric calibration of the projector-camera system is carried out for determining the spatial mapping from the projected pixel grid to the imaged pixel grid. Secondly, the scene is segmented for implementing the visual enhancement approach. And finally, one of three visual enhancement scenarios is applied by projecting the required color image onto the considered segmented scene. The experimental results show that the visual salience of the scene or region of interest can be efficiently enhanced when our proposed method is applied to achieve colorfulness enhancement, hue tuning, and background lightness reduction.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3