Dataset artificial augmentation with a small number of training samples for reflectance estimation

Author:

Zhang Jingjing123ORCID,Wang Zewei123,He Yuke123

Affiliation:

1. China University of Geosciences

2. Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems

3. Engineering Research Center of Intelligent Technology for Geo-Exploration

Abstract

The accuracy of the spectral reflectance estimation approaches highly depends on the amount, coverage, and representation of valid samples in the training dataset. We present a dataset artificial augmentation approach with a small number of actual training samples by light source spectra tuning. Then, the reflectance estimation process is carried out with our augmented color samples for commonly used datasets (IES, Munsell, Macbeth, Leeds). Finally, the impact of the augmented color sample number is investigated using different augmented color sample numbers. The results show that our proposed approach can artificially augment the color samples from CCSG 140 color samples to 13791 color samples and even more. The reflectance estimation performances with augmented color samples are much higher than with the benchmark CCSG datasets for all tested datasets (IES, Munsell, Macbeth, Leeds, as well as a real-scene hyperspectral reflectance database). It indicates that the proposed dataset augmentation approach is practical for improving the reflectance estimation performances.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3