SCAPSM: attenuated phase-shift mask structure for EUV lithography

Author:

Li Chen12ORCID,Dong Lisong123,Wei Yayi123

Affiliation:

1. Institute of Microelectronics of Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

3. Guangdong Greater Bay Area Applied Research Institute of Integrated Circuit and Systems

Abstract

The attenuated phase-shift mask (Att. PSM) is proven to be a promising resolution enhancement technology (RET) to improve the imaging performance in extreme ultraviolet (EUV) lithography. However, due to the reflective nature of the mask structure, the serious shadowing effect can affect the diffraction near field of the mask intensely and further impact the lithography imaging. With the purpose of improving the contrast of lithography imaging, a novel structure of the Att. PSM, to the best of our knowledge, is proposed in this paper. By introducing an absorbent sidewall along the edge of the mask absorber, the diffraction and shadowing effects can be mitigated. By applying the Kirchhoff approximation of mask diffraction, the ability of the novel structure to improve imaging performance is theoretically analyzed. Additionally, these analyses are confirmed by rigorous lithography simulations. The simulation results demonstrate that the proposed mask structure can improve the imaging contrast of EUV lithography, which has potential usage in advanced integrated circuit (IC) manufacturing.

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

National Natural Science Foundation of China

Ministry of Science and Technology of the People’s Republic of China

Guangdong Province Research and Development Program in Key Fields

Youth Innovation Promotion Association Chinese Academy of Sciences

University of Chinese Academy of Sciences

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3