Design method for eliminating spectral line tilt in a multiple sub-pupil ultra-spectral imager (MSPUI)

Author:

Zhang Xv1,Fang Xin2,Li Tao2ORCID,Wang Xiao Xv,Gu Guo Chao,Li Han Shuang,Lin Guan Yu,Li Bo

Affiliation:

1. University of Chinese Academy of Sciences

2. University of Science and Technology of China

Abstract

A multiple sub-pupil ultra-spectral imaging system designed with a single spectrometer and detector can simultaneously detect multiple-channel spectra with ultra-high spectral resolution. However, due to using a prism in the system's front end, the nonlinear dispersion introduces spectral line tilt in the imaging spectra. This phenomenon can lead to bias in the final spectral data. To eliminate this issue, we propose a new design by introducing a second prism to correct this spectral tilt in the system. The angle of spectral line tilt generated by the nonlinear dispersion of the first prism is derived. It provides the theoretical basis for characterizing the second complementary prism. Finally, a UV multiple sub-pupil ultra-spectral imaging system is designed. The system employs two pupil separation prisms and one flat panel array to segment the pupil in three channels, each operating within spectral ranges of 180∼210 nm, 275∼305 nm, and 370∼400 nm, respectively. The spectral resolutions in all three channels are better than 0.1 nm. The corrected spectral line tilt is less than 1/3 of a pixel in the two channels with pupil separation prisms. At a Nyquist frequency of 30 lp/mm, the modulation transfer functions of all three channels are greater than 0.7, ensuring imaging quality. The design results indicate that the method proposed in this paper, utilizing complementary prisms, can effectively correct the spectral line tilt caused by the nonlinear dispersion of the pupil separation prisms. This design approach can be a reference for developing multiple sub-pupil ultra-spectral imaging systems.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

B-type Strategic Priority Program of the Chinese Academy of Sciences

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3