Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach

Author:

Thuillier Gerard,Zhu Ping,Snow Martin,Zhang PengORCID,Ye Xin

Abstract

AbstractAn accurate solar-irradiance spectrum is needed as an input to any planetary atmosphere or climate model. Depending on the spectral characteristics of the chosen model, uncertainties in the irradiance may introduce significant differences in atmospheric and climate predictions. This is why several solar spectral-irradiance data sets have been published during the last decade. They have been obtained by different methods: either measurements from a single instrument or a composite of different spectra, or they are theoretical or semi-empirical solar models. In this paper, these spectral datasets will be compared in terms of irradiance, power per spectral interval, their derived solar-atmosphere brightness temperature, and time series. Whatever the different sources of these spectra are, they generally agree to within their quoted accuracy. The solar-rotation effect simultaneously observed by SORCE and PREMOS–PICARD is accurately measured. The 11-year long-term variability remains a difficult task, given the weak activity of solar cycle 24 and long-term instrument aging.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3