Accurate two-step random phase retrieval approach without pre-filtering based on hyper ellipse fitting

Author:

Li Ziwen1,Du Hubing1ORCID,Feng Leijie1,Gu Feifei2ORCID,Li Yanjie1,Zhu Qian1,Wei Pengfei1,Zhang Gaopeng3

Affiliation:

1. Xi’an Technological University

2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

3. Xi'an Institute of Optics and Precision Mechanics

Abstract

In this work, we propose a hyper ellipse fitting-based high-precision random two-frame phase shifting algorithm to improve the accuracy of phase retrieval. This method includes a process of Gram-Schmidt orthonormalization, followed by a hyper ellipse fitting procedure. The Gram-Schmidt orthonormalization algorithm constructs a quadrature fringe pattern relative to the original fringe pattern. These two quadrature fringe patterns are then fed into the hyper ellipse fitting procedure, which reconstructs the phase map and refines the background light to produce the final accurate phase of interest. Due to the hyper ellipse fitting procedure, the demodulation results are significantly improved in many cases. This method allows us to design a two-shot phase reconstruction algorithm without the need for least squares iteration or pre-filtering, effectively mitigating residual background to the greatest extent. It combines the advantages of both the Gram-Schmidt orthonormalization method and the Lissajous ellipse fitting method, making our hyper ellipse fitting approach a simple, flexible, and accurate phase retrieval algorithm. Experiments show that by using the weighted least squares method and adjusting the weights, this method can prioritize data points with more significant information or higher reliability, ensuring more accurate estimation of the ellipse parameters.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Research Fund for Young Star of Science and Technology in Shaanxi Province

Natural Science Foundation of Shaanxi Province

Excellent Doctorate Dissertations & master's theses Foundation of Xi’an Technological University

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3