Abstract
This paper provides an extensive discussion of a complex amplitude-based dynamic three-dimensional deformation measurement method, in which the phase and amplitude of the speckle field are used for out-of-plane and in-plane deformation calculation respectively. By determining the optimal polarization states of the speckle field and reference field from the comprehensive analysis of measurement mathematical model in the principle of polarization multiplexing, the 3-step phase-shifting interferograms and one speckle gram can be directly recorded by a polarization camera in a single shot. The out-of-plane deformation would be recovered from the subtraction of speckle phases that are demodulated by a special least square algorithm; speckle gram with improved quality is offered for correlation computation to obtain in-plane deformation. The advancement and significance of the optimized strategy are intuitively demonstrated by comparing the measurement accuracy under different combinations of polarization states. Finally, the dynamic thermal deformation experiment reveals the potential in practical real-time applications.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献