Abstract
Retrieving a phase map from a single closed fringe pattern is a challenging task in optical interferometry. In this paper, a convolutional neural network (CNN), HRUnet, is proposed to demodulate phase from a closed fringe pattern. The HRUnet, derived from the Unet model, adopts a high resolution network (HRnet) module to extract high resolution feature maps of the data and employs residual blocks to erase the gradient vanishing in the network. With the trained network, the unwrapped phase map can be directly obtained by feeding a scaled fringe pattern. The high accuracy of the phase map obtained from HRUnet is demonstrated by demodulation of both simulated data and actual fringe patterns. Compared results between HRUnet and two other CNNS are also provided, and the results proved that the performance of HRUnet in accuracy is superior to the two other counterparts.
Funder
Natural Science Basic Research Program in Shaanxi Province of China
Key Scientific Research Program of Education Department in Shaanxi Province of China
National Foreign Experts Program
Xi’an Technological University
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献