Tunable light trapping in the graphene metasurface

Author:

Fan Menghui,Zhang Yao,Chen Deliang1,ren Lirong,Yang Qin,Zhou ChaobiaoORCID

Affiliation:

1. Guizhou Education University

Abstract

Graphene metasurfaces based on surface plasmon resonance can greatly enhance the interaction between light and matter at the nanoscale. At present, the resonance of graphene metasurfaces is widely used to enhance the absorption of atomic layer graphene, but little work has focused on the light field trapping capabilities it brings. In this paper, we numerically study the light trapping and manipulation of an asymmetric graphene metasurface. The designed device supports two resonant modes, and the multipole decomposition confirms that the electric dipole response dominates them. The calculated average electric field enhancement factor (EF) can reach 1206 and 1779, respectively. The near-field distribution indicates that the electric field is mainly localized in the graphene nanodisks. When the Fermi energy changes, the intensity and peak position of EF can be effectively regulated. In addition, when the polarization of the incident light is adjusted, the light field capture of the two modes is independently regulated. These results reveal that the graphene metasurface has significant light field capture and regulation ability, which provides a new idea for the realization of active regulation of high-performance low-dimensional optical devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guizhou Province

Science and Technology Talent Support Project of the Department of Education in the Guizhou Province

Natural Science Foundation of Guizhou Minzu University

Construction Project of Characteristic Key Laboratory in Guizhou Colleges and Universities

Key Laboratory of Guizhou Minzu University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3