Tunable optical absorption in undoped graphene sandwiched between multilayer dielectric stacks with mirror symmetry

Author:

Kengo FaisalORCID,Solihin SORCID,Shoufie Ukhtary MORCID,Suwardy JokoORCID,Aziz Majidi MORCID,Nugraha Ahmad R TORCID

Abstract

Abstract We theoretically investigate the optical absorption of an undoped graphene monolayer when put in a one-dimensional multilayer stack. Using the transfer matrix method, we perform numerical simulations and derive explicit analytical formulas for the optical absorption of the graphene monolayer at the center of the dielectric stack and find that the optical absorption uniquely depends on repetition number (r) and the unit layers structure. When sandwiched between unit layers structure composed of three dielectric materials (referred to as the ‘ABC’ structure) with even values of r, the graphene monolayer absorbs 2.3% of visible to near-infrared light. This behavior is the same as if graphene were free-standing, not sandwiched between the dielectric stack. In contrast to that situation, in the ABC structure with odd values of r, also when the graphene monolayer is sandwiched between four materials (the ‘ABCD’ structure) with any values of r, we can obtain optical absorption as large as 50% at particular refractive indices (n) of the constituent dielectric materials. The 50% absorption is, in fact, the maximum optical absorption for any undoped monolayer material in the symmetric dielectric stacks. By varying r and n within the ABC or ABCD structures, we can finely adjust the optical absorption of graphene within the range of 0%–50%, facilitating precise control for various optoelectronic applications.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3