Affiliation:
1. School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
2. Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
3. School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, 1205 W State St.West Lafayette, IN 47907, USA
Abstract
AbstractOptical metasurfaces are judicously engineered electromagnetic interfaces that can control and manipulate many of light’s quintessential properties, such as amplitude, phase, and polarization. These artificial surfaces are composed of subwavelength arrays of optical antennas that experience resonant light-matter interaction with incoming electromagnetic radiation. Their ability to arbitrarily engineer optical interactions has generated considerable excitement and interest in recent years and is a promising methodology for miniaturizing optical components for applications in optical communication systems, imaging, sensing, and optical manipulation. However, development of optical metasurfaces requires progress and solutions to inherent challenges, namely large losses often associated with the resonant structures; large-scale, complementary metal-oxide-semiconductor-compatible nanofabrication techniques; and incorporation of active control elements. Furthermore, practical metasurface devices require robust operation in high-temperature environments, caustic chemicals, and intense electromagnetic fields. Although these challenges are substantial, optical metasurfaces remain in their infancy, and novel material platforms that offer resilient, low-loss, and tunable metasurface designs are driving new and promising routes for overcoming these hurdles. In this review, we discuss the different material platforms in the literature for various applications of metasurfaces, including refractory plasmonic materials, epitaxial noble metal, silicon, graphene, phase change materials, and metal oxides. We identify the key advantages of each material platform and review the breakthrough devices that were made possible with each material. Finally, we provide an outlook for emerging metasurface devices and the new material platforms that are enabling such devices.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
141 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献