Material platforms for optical metasurfaces

Author:

Choudhury Sajid M.1,Wang Di1,Chaudhuri Krishnakali1,DeVault Clayton2,Kildishev Alexander V.1,Boltasseva Alexandra1,Shalaev Vladimir M.3

Affiliation:

1. School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA

2. Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA

3. School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, 1205 W State St.West Lafayette, IN 47907, USA

Abstract

AbstractOptical metasurfaces are judicously engineered electromagnetic interfaces that can control and manipulate many of light’s quintessential properties, such as amplitude, phase, and polarization. These artificial surfaces are composed of subwavelength arrays of optical antennas that experience resonant light-matter interaction with incoming electromagnetic radiation. Their ability to arbitrarily engineer optical interactions has generated considerable excitement and interest in recent years and is a promising methodology for miniaturizing optical components for applications in optical communication systems, imaging, sensing, and optical manipulation. However, development of optical metasurfaces requires progress and solutions to inherent challenges, namely large losses often associated with the resonant structures; large-scale, complementary metal-oxide-semiconductor-compatible nanofabrication techniques; and incorporation of active control elements. Furthermore, practical metasurface devices require robust operation in high-temperature environments, caustic chemicals, and intense electromagnetic fields. Although these challenges are substantial, optical metasurfaces remain in their infancy, and novel material platforms that offer resilient, low-loss, and tunable metasurface designs are driving new and promising routes for overcoming these hurdles. In this review, we discuss the different material platforms in the literature for various applications of metasurfaces, including refractory plasmonic materials, epitaxial noble metal, silicon, graphene, phase change materials, and metal oxides. We identify the key advantages of each material platform and review the breakthrough devices that were made possible with each material. Finally, we provide an outlook for emerging metasurface devices and the new material platforms that are enabling such devices.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3