Photoacoustic imaging with limited sampling: a review of machine learning approaches

Author:

Wang Ruofan,Zhu Jing,Xia Jun1,Yao Junjie2,Shi Junhui,Li ChiyeORCID

Affiliation:

1. University at Buffalo, The State University of New York

2. Duke University

Abstract

Photoacoustic imaging combines high optical absorption contrast and deep acoustic penetration, and can reveal structural, molecular, and functional information about biological tissue non-invasively. Due to practical restrictions, photoacoustic imaging systems often face various challenges, such as complex system configuration, long imaging time, and/or less-than-ideal image quality, which collectively hinder their clinical application. Machine learning has been applied to improve photoacoustic imaging and mitigate the otherwise strict requirements in system setup and data acquisition. In contrast to the previous reviews of learned methods in photoacoustic computed tomography (PACT), this review focuses on the application of machine learning approaches to address the limited spatial sampling problems in photoacoustic imaging, specifically the limited view and undersampling issues. We summarize the relevant PACT works based on their training data, workflow, and model architecture. Notably, we also introduce the recent limited sampling works on the other major implementation of photoacoustic imaging, i.e., photoacoustic microscopy (PAM). With machine learning-based processing, photoacoustic imaging can achieve improved image quality with modest spatial sampling, presenting great potential for low-cost and user-friendly clinical applications.

Funder

Zhejiang Lab Research Funds

Zhejiang Provincial Key Research and Development Program

Youth Foundation Project of Zhejiang Lab

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3