Navigating challenges and solutions in quantitative photoacoustic imaging

Author:

Zhang Ruochong12ORCID,A'dawiah Rabia'tul1ORCID,Choo Tristan Wen Jie1ORCID,Li Xiuting1ORCID,Balasundaram Ghayathri1ORCID,Qi Yi1ORCID,Goh Yonggeng3ORCID,Bi Renzhe12ORCID,Olivo Malini1ORCID

Affiliation:

1. A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR) 1 , 31 Biopolis Way, Singapore 138669

2. National Semiconductor Translation and Innovation Center 2 , Singapore

3. Department of Diagnostic Imaging, National University Hospital 3 , 5 Lower Kent Ridge Road, Singapore 119074

Abstract

Photoacoustic imaging, an emerging modality that seamlessly combines advantages of optical absorption contrast and ultrasound resolution, holds great promise for noninvasive imaging of biological tissues. Its applications span across diverse fields, such as dermatology, oncology, cardiology, and neurology. However, achieving accurate image reconstruction and physiological parameters quantification from raw photoacoustic signals presents a significant challenge. This challenge primarily arises from the inherent heterogeneity of tissues, encompassing variations in optical fluence and acoustic properties. In addition, incomplete information acquired from a limited view also leads to artifacts, image distortions, and reduced spatial resolution. Furthermore, robust spectral unmixing approach is another key step to restore the initial biochemical components' distribution with complex or unknown background absorption. To overcome these hurdles, researchers have proposed numerous state-of-the-art techniques, aiming to improve the accuracy and reliability of quantitative photoacoustic imaging (qPAI) in heterogeneous tissue. This review aims to comprehensively overview recent developments over the past decade, for addressing four main challenges frequently encountered in qPAI: limited-view reconstruction, acoustic heterogeneity, optical fluence fluctuations, and robust spectral unmixing, which serves as a reference for readers seeking to understand the specific challenges and corresponding solutions in this field.

Funder

Biomedical Research Council

National Semiconductor Translation and Innovation Center

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3