Deep Learning-Based Super-Resolution Reconstruction and Segmentation of Photoacoustic Images

Author:

Jiang Yufei1,He Ruonan1,Chen Yi1,Zhang Jing1,Lei Yuyang1,Yan Shengxian1,Cao Hui1

Affiliation:

1. School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China

Abstract

Photoacoustic imaging (PAI) is an emerging imaging technique that offers real-time, non-invasive, and radiation-free measurements of optical tissue properties. However, image quality degradation due to factors such as non-ideal signal detection hampers its clinical applicability. To address this challenge, this paper proposes an algorithm for super-resolution reconstruction and segmentation based on deep learning. The proposed enhanced deep super-resolution minimalistic network (EDSR-M) not only mitigates the shortcomings of the original algorithm regarding computational complexity and parameter count but also employs residual learning and attention mechanisms to extract image features and enhance image details, thereby achieving high-quality reconstruction of PAI. DeepLabV3+ is used to segment the images before and after reconstruction to verify the network reconstruction performance. The experimental results demonstrate average improvements of 19.76% in peak-signal-to-noise ratio (PSNR) and 4.80% in structural similarity index (SSIM) for the reconstructed images compared to those of their pre-reconstructed counterparts. Additionally, mean accuracy, mean intersection and union ratio (IoU), and mean boundary F1 score (BFScore) for segmentation showed enhancements of 8.27%, 6.20%, and 6.28%, respectively. The proposed algorithm enhances the effect and texture features of PAI and makes the overall structure of the image restoration more complete.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3