Mutually testing source-device-independent quantum random number generator

Author:

Cheng Jialin1,Qin Jiliang1,Liang Shaocong1,Li Jiatong1,Yan Zhihui1,Jia Xiaojun1ORCID,Peng Kunchi1

Affiliation:

1. Shanxi University

Abstract

Quantum random numbers have an incomparable advantage over pseudo-random numbers since randomness originates from intrinsic property of quantum mechanics. The generation rate and the security of quantum random numbers are two significant indicators of a quantum random number generator (QRNG) for practical applications. Here we propose a mutually testing source-device-independent QRNG by simultaneously measuring a pair of conjugate quadratures from two separate parts of an untrusted continuous-variable quantum state. The amounts of randomness of the quadratures can be mutually estimated by each other via entropic uncertainty principle. Instead of randomly toggling between the conjugate quadratures of one state for collecting different types of data, two quadratures can generate check data and raw bits simultaneously and continuously in this mutually testing manner, which enhances the equivalent generation rate of private random bits to around 6 Gbit/s with a 7.5 mW laser beam. Moreover, the overall security is also improved by adjusting the conditional min-entropy in real time according to the continually monitored fluctuations of the local oscillator and the randomly measured electronic noise of homodyne detectors.

Funder

National Natural Science Foundation of China

Program for the Innovative Talents of Higher Education Institutions of Shanxi

Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi

Program for Sanjin Scholars of Shanxi Province

Fund for Shanxi “1331 Project” Key Subjects Construction

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3