Imperfect Measurement Devices Impact the Security of Tomography‐Based Source‐Independent Quantum Random Number Generator

Author:

Li Yuanhao1,Fei Yangyang1ORCID,Wang Weilong1,Meng Xiangdong1,Wang Hong1,Duan Qianheng1,Han Yu1,Ma Zhi1

Affiliation:

1. Henan Key Laboratory of Network Cryptography Technology Zhengzhou Henan 450001 China

Abstract

AbstractSource‐independent quantum random number generators (SI‐QRNGs) can generate secure random numbers with untrusted and uncharacterized sources. Recently, a tomography‐based SI‐QRNG protocol has garnered significant attention for its higher randomness generation rate[Phys. Rev. A 99, 022328 (2019)], achieved through measurements utilizing three mutually unbiased bases. However, imperfect and inadequately characterized measurement devices would impact the security and performance of this protocol. In this work, considering the imperfect basis modulation, afterpulse effect and detection efficiency mismatch, it is demonstrated that the imperfect measurement devices would reduce the extractable randomness and lead to the incorrect estimation of the conditional min‐entropy. Additionally, the influences of the finite‐size effect and the performances of the protocol based on different parameter estimation methods are investigated and compared. To guarantee the security of generated random numbers, accurate conditional min‐entropy estimation methods that are compatible with imperfect factors are also developed. The work emphasizes the significance of considering the imperfections in measurement devices and establishing tighter bounds for parameter estimation, especially in high‐speed systems, thereby enhancing the robustness and performance of the protocol.

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3