Experimental demonstration of robust nanophotonic devices optimized by topological inverse design with energy constraint

Author:

Zhang Guowu1ORCID,Xu Dan-Xia2ORCID,Grinberg Yuri2,Liboiron-Ladouceur Odile1ORCID

Affiliation:

1. McGill University

2. National Research Council Canada

Abstract

In this paper, we present the experimental results for integrated photonic devices optimized with an energy-constrained inverse design method. When this constraint is applied, optimizations are directed to solutions that contain the optical field inside the waveguide core medium, leading to more robust designs with relatively larger minimum feature size. We optimize three components: a mode converter (MC), a 1310 nm/1550 nm wavelength duplexer, and a three-channel C-band wavelength demultiplexer for coarse wavelength division multiplexing (CWDM) application with 50 nm channel spacing. The energy constraint leads to nearly binarized structures without applying independent binarization stage. It also reduces the appearance of small features. In the MC, well-binarized design, improved insertion loss, and cross talk are obtained as a result. Furthermore, the proposed constraint improves the robustness to fabrication imperfections as shown in the duplexer design. With energy constraint optimization, the corresponding spectrum shifts for the duplexer under ± 10    nm dimensional variations are reduced from 105 nm to 55 nm and from 72 nm to 60 nm for the 1310 nm and 1550 nm channel, respectively. In the CWDM demultiplexer, robustness toward ± 10    nm fabrication error is improved by a factor of 2. The introduction of the energy constraint into topological optimization demonstrates computational gain with better-performing designs.

Funder

National Research Council Canada

China Scholarship Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3