Abstract
Integrated optical filters are key components in various photonic integrated circuits for applications of communication, spectroscopy, etc. The dichroic filters can be flexibly cascaded to construct filters with various channel numbers and bandwidths. Therefore, the development of high-performance and compact dichroic filters is crucial. In this work, we develop the dichroic filters with 1.49/1.55-µm channels by an inverse design. Benefiting from a search-space-dimension control strategy and advanced optimization algorithm, our efficient design method results in two high-performance dichroic filters without and with subwavelength gratings (SWGs). The comparison suggests that SWGs in filters can be useful for loss reduction and footprint compression by dispersion engineering. The developed dichroic filter with SWGs exhibits measured bandwidths of 26/29 nm, excess losses of < 0.5 dB, and crosstalks of <−10 dB with a compact footprint of 2.5 × 22.0 µm2. It has advantages in performance or compactness compared to the previously reported counterparts. A triplexer with a footprint of 10.5 × 117 µm2 is developed based on the dichroic filters, also showing decent overall performance and compactness.
Funder
National Key Research and Development Program of China
National Science Fund for Distinguished Young Scholars
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Fundamental Research Funds for the Central Universities
The Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献