Abstract
The development and optimization of photonic devices and various other nanostructure electromagnetic devices present a computationally intensive task. Much optimization relies on finite-difference time-domain or finite element analysis simulations, which can become very computationally demanding for finely detailed structures and dramatically reduce the available optimization space. In recent years, various inverse design machine learning (ML) techniques have been successfully applied to realize previously unexplored optimization spaces for photonic and quantum photonic devices. In this review, recent results using conventional optimization methods, such as the adjoint method and particle swarm, are examined along with ML optimization using convolutional neural networks, Bayesian optimizations with deep learning, and reinforcement learning in the context of new applications to photonics and quantum photonics.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献