Analysis on the difference of skin surface lipids during blue light therapy for acne by lipidomics

Author:

Ding Wenyu12,Hu Yiqiong12,Yu Xiaoqian12,He Congfen12,Tian Yan3

Affiliation:

1. Beijing Technology and Business University

2. Beijing Key Lab of Plant Resources Research and Development

3. Air Force Medical Center

Abstract

Acne is a chronic inflammatory skin disease of the sebaceous glands of the hair follicles, caused by a variety of factors and tends to recur, causing skin damage and psychological stress to patients. Blue light (415nm) is a popular physical therapy for acne, however, studies on the effects of blue light on skin surface lipids (SSL) have not been exhaustively reported. So, we want to investigate the difference in SSL before and after acne treatment with blue light and to reveal the potential mechanism of acne treatment with blue light from the lipid level. SSL samples were collected and physiological indicators (moisture content, transepidermal water loss (TEWL), sebum content and pH) were measured. By using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) with multivariate data analysis methods to obtain specific information on the lipid composition. Analysis of the physiological index data showed a significant increase in moisture content (p = 0.042), pH (p = 0.000) and a significant decrease in sebum content(p = 0.008) in the after treatment area (AT group), while there was no significant change in TEWL values. A total of 2398 lipids were detected by lipidomics analysis and 25 differential lipids were screened. Triradylglycerols (TGs), isoprenoids and hopanoids being the potential differential lipids. Among the lipids associated with the skin barrier, only monounsaturated fatty acids (MUFA) (p = 0.045) were significantly increased. This study revealed significant changes in SSL after blue light treatment for acne, suggesting that blue light exposure may cause changes in the relative lipid content and redistribution of lipid components, and that whether it damages the skin barrier requires further study.

Funder

Beijing Technology and Business University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3