Nonlinear SNR estimation based on the data augmentation-assisted DNN with a small-scale dataset

Author:

Zhao Weiwei1,Cheng Yijun1,Xiang MengORCID,Tang Ming1ORCID,Qin YuwenORCID,Fu SongnianORCID

Affiliation:

1. Huazhong University of Science and Technology

Abstract

Fiber nonlinearity is one of the major impairments for long-haul transmission systems. Therefore, estimating the nonlinear signal-to-noise ratio (SNRNL) is indispensable to guarantee the quality of transmission and manage the operation of optical networks. The deep neural network (DNN) has been successfully applied for the SNRNL estimation. However, the performance substantially degrades, when the mega dataset is inaccessible. Here, we demonstrate an accurate SNRNL estimation based on the data augmentation (DA)-assisted DNN with a small-scale dataset in the frequency domain. When the 95-GBaud dual-polarization 16 quadrature amplitude modulation (DP-16QAM) signal with variable optical launch powers from -2 to 4-dBm is numerically transmitted from 80-km to 1520-km standard single-mode fiber (SSMF), we identify that, in comparison with traditional DNN scheme, the DA allows the reduction of the training dataset size by about 60% while keeping the same mean absolute error (MAE) as 0.2-dB of SNRNL estimation. Meanwhile, the DA-assisted DNN scheme can reduce the MAE by about 0.14-dB compared with the traditional DNN scheme, when both SNRNL estimation schemes use 100 raw datasets which contain 700 symbols. Due to these observations, the DA-assisted DNN scheme is promising for field-trial nonlinear SNR estimation, especially when the collection of mega datasets is inconvenient.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3