Fast adaptation of multi-task meta-learning for optical performance monitoring

Author:

Zhang Yu1,Zhou Peng1,Liu Yan1,Wang Jixiang1,Li Chuanqi2,Lu Ye1

Affiliation:

1. Education Department of Guangxi

2. Nanning Normal University

Abstract

An algorithm is proposed for few-shot-learning (FSL) jointing modulation format identification (MFI) and optical signal-to-noise ratio (OSNR) estimation. The constellation diagrams of six widely-used modulation formats over a wide range of OSNR (10-40 dB) are obtained by a dual-polarization (DP) coherent detection system at 32 GBaud. We introduce auxiliary task to model-agnostic meta-learning (MAML) which makes the gradient of meta tasks decline faster in the direction of optimal target. Ablation experiments including multi-task model-agnostic meta-learning (MT-MAML), single-task model-agnostic meta-learning (ST-MAML) and adaptive multi-task learning (AMTL) are executed to train a data set with only 20 examples for each class. First, we discuss the impact from the number of shots and gradient descent steps for support set on the meta-learning based schemes to determine the best hyper parameters and conclude that the proposed method better captures the similarity between new and previous knowledge at 4 shot and 1 step. Withdrawn fine-tuning, the model achieves the lowest error ∼0.37 dB initially. Then, we simulate two other schemes (AMTL and ST-MAML), and the numerical results shows that mean square error (MSE) are ∼0.6 dB, ∼0.3 dB and ∼0.18 dB, respectively, proposed method has faster adaption to main task. For low order modulation formats, the proposed method almost reduces the error to 0. Meanwhile, we reveal the degree of deviation between the prediction and target and find that the deviation is mainly concentrated in the high OSNR range of 25-40 dB. Specifically, we investigate the variation curve of adaptive weights during pretraining and conclude that after 30 epoch, the model's attention was almost entirely focused on estimating OSNR. In addition, we study the generalization ability of the model by varying the transmission distance. Importantly, excellent generalization is also experimentally verified. In this paper, the method proposed will greatly reduce the cost for repetitively collecting data and the training resources required for fine-tuning models when OPM devices need to be deployed at massive nodes in dynamic optical networks.

Funder

Education Department of Guangxi Zhuang Autonomous Region

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3