Adaptive Bayesian neural networks nonlinear equalizer in a 300-Gbit/s PAM8 transmission for IM/DD OAM mode division multiplexing

Author:

Zhou Sitong12,Liu Xinyu12,Gao Ran12,Jiang Ziyun1,Zhang Han3,Xin Xiangjun124

Affiliation:

1. Beijing Institute of Technology

2. BUPT

3. Chinese Academy of Sciences

4. Beijing University of Posts and Telecommunications (BUPT)

Abstract

The strong stochastic nonlinear impairment induced by random mode coupling appears to be a long-standing performance-limiting problem in the orbital angular momentum (OAM) mode division multiplexing (MDM) of intensity modulation direct detection (IM/DD) transmission systems. In this Letter, we propose a Bayesian neural network (BNN) nonlinear equalizer for an OAM-MDM IM/DD transmission with three modes. Unlike conventional Volterra and convolutional neural network (CNN) equalizers with fixed weight coefficients, the weights and biases of the BNN nonlinear equalizer are regarded as probability distributions, which can accurately match the stochastic nonlinear model of the OAM-MDM. The BNN nonlinear equalizer is capable of adaptively updating its weights and biases sample-by-sample, according to the probability distribution. An experiment was conducted on a 300-Gbit/s PAM8 signal with three modes over a 2.6-km OAM-MDM RCF transmission. The experimental results demonstrate that the proposed BNN nonlinear equalizer exhibits promising solutions to effectively mitigate nonlinear distortions, which outperforms conventional Volterra and CNN equalizers with receiver sensitivity improvements of 1.0 dBm and 2.5 dBm, respectively, under hard-decision forward error correction (HD-FEC) thresholds. Moreover, compared with the Volterra and CNN equalizers, the complexity of the OAM-MDM is significantly improved through the BNN nonlinear equalizer. The proposed BNN nonlinear equalizer is a promising candidate for the high capacity inter-data center interconnects.

Funder

National Key Research and Development Program of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Beijing Institute of Technology Research Fund Program for Young Scholars

Open Fund of IPOC

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3