Optical interference effect in the hybrid quantum dots/two-dimensional materials: photoluminescence enhancement and modulation

Author:

Liang Xilong1,Qin Chengbing1ORCID,Qiao Zhixing2ORCID,Kang Wenhui1,Yin Hualong1,Dong Shuai1,Li Xiangdong1,Wang Shen1,Su Xingliang1,Zhang Guofeng1,Chen Ruiyun1ORCID,Hu Jianyong1,Xiao Liantuan1,Jia Suotang1

Affiliation:

1. Shanxi University

2. Shanxi Medical University

Abstract

The optical interference effect originating from the multiple reflections between the two-dimensional (2D) materials and the substrates has been used to dramatically enhance their Raman signal. However, this effect in the hybrid structures of colloidal quantum dots (QD) coupled to 2D materials is always overlooked. Here we theoretically prove that the photoluminescence (PL) intensities of the QD films in the QD-2D hybrid structures can be strongly enhanced and modulated by the optical interference effect between QD and 2D interfaces, breaking the inherent standpoint that PL intensities of the QD films are always prominently quenched in these hybrid structures. The theoretical predictions have been well confirmed by experimental measurements of PL properties of CdSe/ZnS and CdSeTe/ZnS QD on different 2D materials (such as WSe2, MoS2, and h-BN). PL intensities of these QD films have been periodically modulated from almost disappearing to strong enhancement (with the enhancement of about 6 times). The optical interference effect uncovered in this work enables a powerful method to manipulate the PL property of the QD films in the different QD-2D hybrid structures. These results can boost the optical performance of the QD-based electronic and optoelectronic devices in the hybrid QD-2D structures.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Program for Changjiang Scholars and Innovative Research Team

111 projects

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3