Advances in Heterostructures for Optoelectronic Devices: Materials, Properties, Conduction Mechanisms, Device Applications

Author:

Ra Hyun‐Soo12,Lee Sang‐Hyeon1,Jeong Seock‐Jin1,Cho Sinyoung1,Lee Jong‐Soo1ORCID

Affiliation:

1. Department of Energy Science and Engineering and Energy Science and Engineering Research Center Daegu Gyeongbuk Institute of Science & Technology (DGIST) Daegu 42988 Republic of Korea

2. ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Castelldefels 08860 Barcelona Spain

Abstract

AbstractAtomically thin 2D transition metal dichalcogenides (TMDs) have recently been spotlighted for next‐generation electronic and photoelectric device applications. TMD materials with high carrier mobility have superior electronic properties different from bulk semiconductor materials. 0D quantum dots (QDs) possess the ability to tune their bandgap by composition, diameter, and morphology, which allows for a control of their light absorbance and emission wavelength. However, QDs exhibit a low charge carrier mobility and the presence of surface trap states, making it difficult to apply them to electronic and optoelectronic devices. Accordingly, 0D/2D hybrid structures are considered as functional materials with complementary advantages that may not be realized with a single component. Such advantages allow them to be used as both transport and active layers in next‐generation optoelectronic applications such as photodetectors, image sensors, solar cells, and light‐emitting diodes. Here, recent discoveries related to multicomponent hybrid materials are highlighted. Research trends in electronic and optoelectronic devices based on hybrid heterogeneous materials are also introduced and the issues to be solved from the perspective of the materials and devices are discussed.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3