Cloaked near-field probe for non-invasive near-field optical microscopy

Author:

Bernal Arango Felipe1,Alpeggiani Filippo1,Conteduca Donato2ORCID,Opheij Aron1,Chen Aobo3,Abdelrahman Mohamed I.3,Krauss Thomas F.2,Alù Andrea4ORCID,Monticone Francesco3ORCID,Kuipers Laurens1ORCID

Affiliation:

1. Delft University of Technology

2. University of York

3. Cornell University

4. City University of New York

Abstract

Near-field scanning optical microscopy is a powerful technique for imaging below the diffraction limit, which has been extensively used in biomedical imaging and nanophotonics. However, when the electromagnetic fields under measurement are strongly confined, they can be heavily perturbed by the presence of the near-field probe itself. Here, taking inspiration from scattering-cancellation invisibility cloaks, Huygens–Kerker scatterers, and cloaked sensors, we design and fabricate a cloaked near-field probe. We show that, by suitably nanostructuring the probe, its electric and magnetic polarizabilities can be controlled and balanced. As a result, probe-induced perturbations can be largely suppressed, effectively cloaking the near-field probe without preventing its ability to measure. We experimentally demonstrate the cloaking effect by comparing the interaction of conventional and nanostructured probes with a representative nanophotonic structure, namely, a 1D photonic-crystal cavity. Our results show that, by engineering the structure of the probe, one can systematically control its back action on the resonant fields of the sample and decrease the perturbation by > 70 % with most of our modified probes, and by up to 1 order of magnitude for the best probe, at probe-sample distances of 100 nm. Our work paves the way for non-invasive near-field optical microscopy of classical and quantum nanosystems.

Funder

European Research Council

Air Force Office of Scientific Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3