Directional dipole dice enabled by anisotropic chirality

Author:

Cheng Yuqiong1ORCID,Oyesina Kayode Adedotun2ORCID,Xue Bo2ORCID,Lei Dangyuan3ORCID,Wong Alex M. H.24ORCID,Wang Shubo15ORCID

Affiliation:

1. Department of Physics, City University of Hong Kong, Kowloon, Hong Kong 999077, China

2. Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China

3. Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China

4. State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong 999077, China

5. City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China

Abstract

Directional radiation and scattering play an essential role in light manipulation for various applications in integrated nanophotonics, antenna and metasurface designs, quantum optics, etc. The most elemental system with this property is the class of directional dipoles, including the circular dipole, Huygens dipole, and Janus dipole. A unified realization of all three dipole types and a mechanism to freely switch among them are previously unreported, yet highly desirable for developing compact and multifunctional directional sources. Here, we theoretically and experimentally demonstrate that the synergy of chirality and anisotropy can give rise to all three directional dipoles in one structure at the same frequency under linearly polarized plane wave excitations. This mechanism enables a simple helix particle to serve as a directional dipole dice (DDD), achieving selective manipulation of optical directionality via different “faces” of the particle. We employ three “faces” of the DDD to realize face-multiplexed routing of guided waves in three orthogonal directions with the directionality determined by spin, power flow, and reactive power, respectively. This construction of the complete directionality space can enable high-dimensional control of both near-field and far-field directionality with broad applications in photonic integrated circuits, quantum information processing, and subwavelength-resolution imaging.

Funder

MOST | National Natural Science Foundation of China

Research Grants Council of the Hong Kong Special Administrative Region, China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3