All-optical nanoscopic spatial control of molecular reaction yields on nanoparticles

Author:

Zhang Wenbin123ORCID,Dagar Ritika12,Rosenberger Philipp12,Sousa-Castillo Ana1,Neuhaus Marcel1,Li Weiwei1,Khan Sharjeel A.4,Alnaser Ali S.4,Cortes Emiliano1,Maier Stefan A.156ORCID,Costa-Vera Cesar7ORCID,Kling Matthias F.1289ORCID,Bergues Boris12ORCID

Affiliation:

1. Ludwig-Maximilians-Universität Munich

2. Max Planck Institute of Quantum Optics

3. East China Normal University

4. American University of Sharjah

5. Imperial College London

6. Monash University

7. Escuela Politecnica Nacional

8. SLAC National Accelerator Laboratory

9. Stanford University

Abstract

Molecular adsorbate reactions on nanoparticles play a fundamental role in areas such as nano-photocatalysis, atmospheric, and astrochemistry. They can be induced, enhanced, and controlled by field localization and enhancement on the nanoparticle surface. In particular, the ability to perform highly controlled near-field-mediated reactions is key to deepening our understanding of surface photoactivity on nanosystems. Here, using reaction nanoscopy, we experimentally demonstrate all-optical nanoscopic control of surface reaction yields by tailoring the near fields on nanoparticles with waveform-controlled linear and bicircular two-color laser pulses, respectively. We observe site-selective proton emission from the dissociative ionization of adsorbate molecules on Si O 2 nanoparticles as a function of the polarization and relative phase of the two-color pulses. The angularly resolved close-to-uniform mapping between the surface reaction yields and the measured ion momentum enables the observation and spatial control of molecular reactions on the nanoparticle surface with nanoscopic resolution. The experimental results are modeled and reproduced qualitatively by classical trajectory Monte Carlo simulations. Our work paves the way toward reliable all-optical control of photocatalytic chemical reactions on nanoscale surfaces.

Funder

Deutsche Forschungsgemeinschaft

Max Planck Fellow program

Alexander von Humboldt-Stiftung

HORIZON EUROPE Marie Sklodowska-Curie Actions

European Research Council

FRG grant

U.S. Department of Energy

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3