Tracking surface charge dynamics on single nanoparticles

Author:

Dagar Ritika12ORCID,Zhang Wenbin123ORCID,Rosenberger Philipp12ORCID,Linker Thomas M.4ORCID,Sousa-Castillo Ana5ORCID,Neuhaus Marcel12ORCID,Mitra Sambit12ORCID,Biswas Shubhadeep124ORCID,Feinberg Alexandra4,Summers Adam M.4ORCID,Nakano Aiichiro6ORCID,Vashishta Priya6ORCID,Shimojo Fuyuki7ORCID,Wu Jian3ORCID,Vera Cesar Costa18ORCID,Maier Stefan A.910ORCID,Cortés Emiliano5ORCID,Bergues Boris12ORCID,Kling Matthias F.12411ORCID

Affiliation:

1. Faculty of Physics, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany.

2. Max Planck Institute of Quantum Optics, D-85748 Garching, Germany.

3. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.

4. Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

5. Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität Munich, D-80539 Munich, Germany.

6. Collobratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089, USA.

7. Department of Physics, Kumamoto University, Kumamoto 860-0862, Japan.

8. Department of Physics, Escuela Politecnica Nacional, Quito 170525, Ecuador.

9. Department of Physics, Imperial College London, London SW7 2AZ, UK.

10. School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.

11. Applied Physics Department, Stanford University, Stanford, CA 94305, USA.

Abstract

Surface charges play a fundamental role in physics and chemistry, in particular in shaping the catalytic properties of nanomaterials. However, tracking nanoscale surface charge dynamics remains challenging due to the involved length and time scales. Here, we demonstrate time-resolved access to the nanoscale charge dynamics on dielectric nanoparticles using reaction nanoscopy. We present a four-dimensional visualization of the spatiotemporal evolution of the charge density on individual SiO 2 nanoparticles under strong-field irradiation with femtosecond-nanometer resolution. The initially localized surface charges exhibit a biexponential redistribution over time. Our findings reveal the influence of surface charges on surface molecular bonding through quantum dynamical simulations. We performed semi-classical simulations to uncover the roles of diffusion and charge loss in the surface charge redistribution process. Understanding nanoscale surface charge dynamics and its influence on chemical bonding on a single-nanoparticle level unlocks an increased ability to address global needs in renewable energy and advanced health care.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3