All-optical steering on the proton emission in laser-induced nanoplasmas

Author:

Sun Fenghao,Qu Qiwen,Li HuiORCID,Jiang ShichengORCID,Liu Qingcao,Ben Shuai,Pei Yu,Liang Jiaying,Wang Jiawei,Song Shanshan,Gao Jian,Yang Weifeng,Xu HongxingORCID,Wu JianORCID

Abstract

AbstractNanoplasmas induced by intense laser fields have attracted enormous attention due to their accompanied spectacular physical phenomena which are vigorously expected by the community of science and industry. For instance, the energetic electrons and ions produced in laser-driven nanoplasmas are significant for the development of compact beam sources. Nevertheless, effective confinement on the propagating charged particles, which was realized through magnetic field modulation and target structure design in big facilities, are largely absent in the microscopic regime. Here we introduce a reliable scheme to provide control on the emission direction of protons generated from surface ionization in gold nanoparticles driven by intense femtosecond laser fields. The ionization level of the nanosystem provides us a knob to manipulate the characteristics of the collective proton emission. The most probable emission direction can be precisely steered by tuning the excitation strength of the laser pulses. This work opens new avenue for controlling the ion emission in nanoplasmas and can vigorously promote the fields such as development of on-chip beam sources at micro-/nano-scales.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3