Affiliation:
1. The University of Tokyo
Abstract
Quantum well intermixing (QWI) on a III-V-on-insulator (III-V-OI) substrate is presented for active-passive integration. Shallow implantation at a high temperature, which is essential for QWI on a III-V-OI substrate, is accomplished by phosphorus molecule ion implantation. As a result, the bandgap wavelength of multi-quantum wells (MQWs) on a III-V-OI substrate is successfully tuned by approximately 80 nm, enabling the monolithic integration of electro-absorption modulators and waveguide photodetectors using a lateral p-i-n junction formed along the InP/MQW/InP rib waveguide. Owing to the III-V-OI structure and the rib waveguide structure, the parasitic capacitance per unit length can be reduced to 0.11 fF/µm, which is suitable for high-speed and low-power modulators and photodetectors. The presented QWI can extend the possibility of a III-V complementary metal-oxide-semiconductor (CMOS) photonics platform for large-scale photonic integrated circuits.
Funder
New Energy and Industrial Technology Development Organization
Japan Science and Technology Agency
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献