Extreme learning machine and genetic algorithm in quantitative analysis of sulfur hexafluoride by infrared spectroscopy

Author:

Liu Huan123ORCID,Zhu Jun4,Yin Huan4,Yan Qiangqiang12,Liu Hong12,Guan Shouxin123,Cai Qisheng5,Sun Jiawen6,Yao Shun4,Wei Ruyi1237

Affiliation:

1. CAS Key Laboratory of Spectral Imaging Technology

2. Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences

3. University of Chinese Academy of Sciences

4. DFH Satellite Co., Ltd.

5. Chinese Academy of Sciences

6. Qingdao Guoke Hongcheng Optoelectronic Technology Co., Ltd.

7. Wuhan University

Abstract

Owing to the general disadvantages of traditional neural networks in gas concentration inversion, such as slow training speed, sensitive learning rate selection, unstable solutions, weak generalization ability, and an ability to easily fall into local minimum points, the extreme learning machine (ELM) was applied to sulfur hexafluoride ( S F 6 ) concentration inversion research. To solve the problems of high dimensionality, collinearity, and noise of the spectral data input to the ELM network, a genetic algorithm was used to obtain fewer but critical spectral data. This was used as an input variable to achieve a genetic algorithm joint extreme learning machine (GA-ELM) whose performance was compared with the genetic algorithm joint backpropagation (GA-BP) neural network algorithm to verify its effectiveness. The experiment used 60 groups of S F 6 gas samples with different concentrations, made via a self-developed Fourier transform infrared spectroscopy instrument. The S F 6 gas samples were placed in an open optical path to obtain infrared interference signals, and then spectral restoration was performed. Fifty groups were randomly selected as training samples, and 10 groups were used as test samples. The BP neural network and ELM algorithms were used to invert the S F 6 gas concentration of the mixed absorbance spectrum, and the results of the two algorithms were compared. The sample mean square error decreased from 248.6917 to 63.0359; the coefficient of determination increased from 0.9941 to 0.9984; and the single running time decreased from 0.0773 to 0.0042 s. Comparing the optimized GA-ELM algorithm with traditional algorithms such as ELM and partial least squares, the GA-ELM algorithm had higher prediction accuracy and operating efficiency and better stability and generalization performance in the quantitative analysis of small samples of gas under complex noise backgrounds.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3