Rapid determination of the main components of corn based on near-infrared spectroscopy and a BiPLS-PCA-ELM model

Author:

Xu Lili,Liu Jinming,Wang Chunqi,Li Zhijiang,Zhang Dongjie1

Affiliation:

1. National Coarse Cereals Engineering Technology Center

Abstract

To evaluate corn quality quickly, the feasibility of near-infrared spectroscopy (NIRS) coupled with chemometrics was analyzed to detect the moisture, oil, protein, and starch content in corn. A backward interval partial least squares (BiPLS)-principal component analysis (PCA)-extreme learning machine (ELM) quantitative analysis model was constructed based on BiPLS in conjunction with PCA and the ELM. The selection of characteristic spectral intervals was accomplished by BiPLS. The best principal components were determined by the prediction residual error sum of squares of Monte Carlo cross validation. In addition, a genetic simulated annealing algorithm was utilized to optimize the parameters of the ELM regression model. The established regression models for moisture, oil, protein, and starch can meet the demand for corn component detection with the prediction determination coefficients of 0.996, 0.990, 0.974, and 0.976; the prediction root means square errors of 0.018, 0.016, 0.067, and 0.109; and the residual prediction deviations of 15.704, 9.741, 6.330, and 6.236, respectively. The results show that the NIRS rapid detection model has higher robustness and accuracy based on the selection of characteristic spectral intervals in conjunction with spectral data dimensionality reduction and nonlinear modeling and can be used as an alternative strategy to detect multiple components in corn rapidly.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Heilongjiang Province

Heilongjiang Bayi Agricultural University Support Program for San Heng San Zong

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3