Hyperspectral Estimation of SPAD Value of Cotton Leaves under Verticillium Wilt Stress Based on GWO–ELM

Author:

Yuan Xintao12,Zhang Xiao12,Zhang Nannan12,Ma Rui12,He Daidi12,Bao Hao12,Sun Wujun12

Affiliation:

1. College of Information Engineering, Tarim University, Alar 843300, China

2. Key Laboratory of Tarim Oasis Agriculture (Tarim University), Ministry of Education, Alar 843300, China

Abstract

Rapid and non-destructive estimation of the chlorophyll content in cotton leaves is of great significance for the real-time monitoring of cotton growth under verticillium wilt (VW) stress. The spectral reflectance of healthy and VW cotton leaves was determined using hyperspectral technology, and the original spectra were processed using Savitzky–Golay (SG) smoothing, and on its basis through mean centering, standard normal variate (SG-SNV), multiplicative scatter correction (SG-MSC), reciprocal second-order differentiation, and logarithmic second-order differentiation ([lg(SG)]″) preprocessing operations. The characteristic bands were selected based on the correlation coefficient, vegetation index, successive projection algorithm (SPA), and competitive adaptive reweighted sampling (CARS). The single-factor model, back propagation neural network of particle swarm optimization algorithm, and extreme learning machine (ELM) of a grey wolf optimizer (GWO) algorithm were constructed to compare and explore the ability of each model to estimate the soil plant analysis development (SPAD) value of cotton under VW stress. The results showed that spectral pretreatment could improve the correlation between characteristic bands and SPAD values. SG-MSC and SG-SNV showed better changes in the five pretreatments, and the maximum correlation coefficients of healthy and VW cotton leaves were higher than 0.74. Compared with SPA, the accuracy of model estimation based on CARS-extracted characteristic bands was higher, and the estimation accuracy of the multi-factor model was better than that of the single-factor model under each pretreatment. For healthy cotton leaves, [lg(SG)]″–CARS–GWO–ELM was the optimal model, with a modeling and validation set R2 of 0.956 and 0.887, respectively. For VW cotton leaves, SG-MSC–CARS–GWO–ELM was the optimal model, with a modeling and validation set R2 of 0.832 and 0.824, respectively. Therefore, the GWO–ELM model constructed under different pretreatments combined with characteristic extraction methods can be used for the estimation of leaf SPAD values under VW stress to dynamically monitor VW stress in cotton and provide a theoretical reference for precision agriculture.

Funder

National Natural Science Foundation of China

Bingtuan Science and Technology Program

Tarim University President’s Fund

Graduate Scientific Research Innovation project of Tarim University

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3